Fast Computation of the Fibonacci sequence in Arbitrary Precision

Abstract

This paper addresses the computation of the Fibonacci sequence with arbitrary precision,
recognizing that while the Fibonacci sequence is straightforward from a mathematical
perspective, its calculation encounters limitations when using a 64-bit environment, specifically
above the 93" Fibonacci number. To overcome this limitation, we explore various methods for
computing the Fibonacci numbers, including the classic method, the Matrix exponentiation
method, and the fast-doubling method. Additionally, Binet's direct formula is considered, but its
accuracy is found to be constrained when using IEEE754 64-bit floating-point arithmetic.
However, in the context of arbitrary precision, we propose an improved version that provides
accurate results. Ultimately, a hybrid approach is presented as the preferred solution for
efficiently computing the Fibonacci sequence with arbitrary precision.

Introduction

Similar to calculating factorials for integers, computing the Fibonacci sequence in a 64-bit
environment has its limitations, reaching its maximum at the 93" Fibonacci number. We initially
examine the straightforward implementation using function recursion, but due to its inefficiency,
we discard this method. Instead, we explore enhancements to the recursion by incorporating
memoization, which mitigates redundant calculations. Subsequently, we present loop-based
computation as a simpler alternative to calculating Fibonacci numbers. Moving towards more
advanced techniques, we investigate the fast-doubling method and the Matrix exponentiation
method, with an emphasis on further improving the fast-doubling method using memoization. A
comparison is made between these two methods to determine their performance characteristics.
Additionally, Binet's direct formula is briefly discussed, which, when using IEEE754 64-bit
floating-point arithmetic, exhibits accuracy limitations beyond the 71 Fibonacci number.
However, in the context of arbitrary precision, we propose an enhancement to this formula that
ensures accurate results. The performance of all these methods is evaluated, leading to a
recommendation and suggestion for implementing a hybrid approach to achieve optimal
computational efficiency.

As customary, the actual C++ source code for the calculations will be provided, utilizing the
author's own arbitrary precision Math library [1].

This paper is part of a series of arbitrary precision papers describing methods, implementation
details, and optimization techniques. These papers can be found on my website at
www.hvks.com/Numerical/papers.html and are listed below:

1. Fast Computation of Math Constants in arbitrary precision. HVE Fast Gamma, Beta, Error, and
Zeta functions for arbitrary precision.

2. Fast Gamma, Beta, Error, and Zeta functions for arbitrary precision. HVE Fast Gamma, Beta,
Error, and Zeta functions for arbitrary precision.

3. Fast Square Root & Inverse calculation for arbitrary precision math. HVE Fast Square Root
& inverse calculation for arbitrary precision

4. Fast Exponential calculation for arbitrary precision math. HVE Fast Exp() calculation for
arbitrary precision

21 September 2023. Page 1

Fast Computation of the Fibonacci sequence in Arbitrary Precision

5. Fast logarithm calculation for arbitrary precision math. HVE Fast Log() calculation for arbitrary
precision

6. Practical implementation of Spigot Algorithms for Transcendental Constants. Practical
implementation of Spigot Algorithms for transcendental constants
Practical implementation of © algorithms. HVE Practical implementation of PI Algorithms

8. Fast Trigonometric function for arbitrary precision. HVE Fast Trigonometric calculation for
arbitrary precision

9. Fast Hyperbolic functions for arbitrary precision. HVE Fast Hyperbolic calculation for arbitrary
precision

10. Fast conversion from arbitrary precision number to a string. HVE Fast conversion from
arbitrary precision to string

11. Fast conversion from a decimal string to an arbitrary precision number. HVE Fast conversion
from string to arbitrary precision

12. Fast Computation of Stirling’s numbers in arbitrary precision. HVE Fast Computation of
Stirling numbers in arbitrary precision

13. Fast Prime computation in arbitrary precision. HVE Fast Prime Computation in arbitrary precision

14. Fast PRNG in arbitrary precision. HVE Fast PRNG in arbitrary precision

15. Fast Fibonacci sequence in arbitrary precision. HVE Fast Fibonacci in arbitrary precision

16. Fast Factorial in arbitrary precision. HVE Fast factorial and binomial for arbitrary precision.

21 September 2023. Page 2

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Table of Contents

Contents
AADSTIACE ...ttt h et b et h et e h bt e it e bttt eat et e a e bt e b st e ae e 1
INEEOAUCTION ...ttt ettt sttt e bt et e e bt e sab e embeesbeeeabeebeesaeeenee 1
TADIE OF CONENILS ...ttt ettt b et b e bt e et e bt e sbbeeabe e bt e esbeenbeesaeeaas 3
The Arbitrary preciSion HDTATYiecuiieciieecieeeie ettt e et et e st e e sabeeesaeesnseeessseeens 4
oL o) 163 1 103 s o] P TP 4
Internal format for int precision variablescccvveviiieiieeiiiece e 4
The goal for implementing the Fibonacci sequence with arbitrary precision............cocceceveeveennnene 5
The History of the FIbonacci SEqUENCEcueeouiiriiiiiieiiecii ettt 5
Application for FIDoNacci SEQUENCE.........cccviiriiiiiieiieciie ettt ettt e e eaaeas 6
The definition of FIbONACCI’S SEQUENCEccuvieiieriiiiiieiieeie ettt ettt tee e e esaee e 6
The Fibonacci Sequence and the Golden Ratio..........ccccuvieiiiiiiiiiiiiicciiececce e 7
The simple computational approach of the Fibonacci sequenceccceeeveeeciieeiiienciieeniie e, 8
The more advanced computation of the Fibonacci sequence.ccoccveeveieenciieecieeecieeeiee e, 11
Matrix EXPONENTIAtION ...eceiiiiiiiesiieeciee et e ciee et eeestte e st e e aeeetaeesbeeessseeesseeessseeessseesnsneessseeenns 11
Fast doubling mMethod.cc.ooiiiiiiiiieie ettt et 15
Performance of the methods in a 64-bit eNVIFONMENL..........cceeviirieririirieieeieeeeseee e 18
Approximation of the Fibonacci sequence using Binet’s formula............ccccooceeviniininiinnncnnn. 19
Recommendation for Fibonacci methods in a 64-bit environment.............cceccveveeeiiienneenieeneeenne. 19
Fibonacci number in arbitrary PreCISIONcccuvieevieeriieeeiieeeiee et e eieeeereeeseaeeeaeeeeeaeeeeaeesreeessseens 20
Binet’s formula in arbitrary PreCiSIONc.uiiiiiieciiecieeeiee et eiteeeiee et eeseeeeereeesea e eaaeesnseeenasee s 22
Performance using arbitrary PreCiSIONuieiuiieeiieciiieeiieeeieeeete et et e et e e eeereesraeeessee s 23
Recommendation for Fibonacci in arbitrary preciSionee.eeeeveeeeveeeeieesieeerieeeeeesveeesvee e 23
OUr FInal HybDrid VEISIONcoouiiiiieiiieiieieesiie ettt ettt ettt et ste et e e sbe e b e snneenneas 23
RETETEICE ...ttt et sttt ettt et e bt ettt e naeeaesaeens 26

21 September 2023. Page 3

Fast Computation of the Fibonacci sequence in Arbitrary Precision

The Arbitrary precision library

If you already are familiar with the arbitrary precision library, you can skip this section. There
are two classes. One for int_precision that handles arbitrary precision integers and one for
float precision that handles all floating-point arbitrary precision. Since Fibonacci numbers are
integers, we only need to highlight the int precision class.

Int_precision class

To understand the C++ code and text we have to highlight a few features of the arbitrary
precision library where the class name is int_precision. Instead of declaring, a variable with any
of the build-in integer type char, short, int, long, long long, unsigned char, unsigned short,
unsigned int, unsigned long, and unsigned long long you just replace the type name with
int_precision. E.g.

int_precision ip; // Declare an arbitrary precision integer

You can do any integer operations with int_precision that you can do for any type of integer in
C++. Furthermore, there are a few methods you will need to know.

One of them is .iszero() which simply returns true or false if the int precision variable is zero or
not zero. Another is .even() and .odd() which return the Boolean value of the number even and
odd status. There are other methods but I will refer you to the user manual for the arbitrary
precision package [1].

Internal format for int precision variables
For the internal layout of the arbitrary precision number, we are using the STL vector library
declared as:

vector<uintmax_t> mNumber;

uintmax_t is mostly a 64-bit quantity on most systems, so we use a vector of 64-bit unsigned
integer to store our integer precision number.

The method .size() returns the number of internal vector entries needed to hold the number.

The number is stored such that the vector mNumber[0] holds the least significant 64-bit binary
data. The mNumber[size()-1] holds the most significant 64-bit binary data. The sign is kept
separately in a class field variable mSign, which means that the mNumber holds the unsigned
binary vector data.

For more details see [1].

21 September 2023. Page 4

Fast Computation of the Fibonacci sequence in Arbitrary Precision

The goal for implementing the Fibonacci sequence with arbitrary

precision

Our objective is to devise an efficient method for calculating the Fibonacci sequence with
arbitrary precision, surpassing the limitations of a 64-bit data type. Implementing this sequence
requires exploring various algorithms or methods that can accommodate the extended precision
requirements. While some algorithms may seem feasible and appropriate for a 64-bit
environment, they often prove inadequate in delivering the desired performance and efficiency
when dealing with larger precision values.

In this study, we will thoroughly examine several well-known methods for calculating the
Fibonacci sequence and assess their performance within the 64-bit environment. Subsequently,
we will identify the most promising methods that exhibit scalability beyond the constraints of the
64-bit environment. Our ultimate aim is to find the optimal approach capable of efficiently
computing the Fibonacci sequence to any arbitrary precision.

The History of the Fibonacci Sequence

The history of the Fibonacci sequence traces back to a mathematician named Leonardo of Pisa,
who is fondly known as Fibonacci. Hailing from 12th and 13th century Italy, Fibonacci
introduced this sequence to the Western world through his influential work, "Liber Abaci" or the
"Book of Calculation."

Interestingly, Fibonacci was not the originator of the sequence itself. Before his time, Indian
mathematicians like Virahanka, Pingala, and Gopala had already described similar sequences.
However, Fibonacci's contribution lies in popularizing and disseminating the sequence to a
broader audience.

The encounter between Fibonacci and the sequence occurred during his studies on a problem
related to the breeding of rabbits. This conundrum, often referred to as the "rabbit problem" or
the "problem of the growth of a population," aimed to determine the number of rabbits that
would be born in a year under specific conditions. It was through this investigation that
Fibonacci derived the sequence of numbers now known as the Fibonacci sequence.

In his seminal work, "Liber Abaci," Fibonacci presented the sequence along with its intriguing
properties. He explored its recurrence relation, which defines each term as the sum of the two
preceding terms. Additionally, he showcased the practical applications of the sequence, such as
its relevance in interest rate calculations, currency exchange, and other mathematical quandaries.

Although Fibonacci may not have comprehended the full extent of the sequence's significance
and diverse applications during his time, his work laid the foundation for the widespread
recognition and popularity of the Fibonacci sequence. Subsequent mathematicians, scientists,
and enthusiasts have since delved deeper into its properties and applications, propelling its
significance in various fields of study, including mathematics, nature, and art.

21 September 2023. Page 5

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Application for Fibonacci Sequence

The Fibonacci sequence, with its fascinating patterns and inherent mathematical beauty, finds
applications in a multitude of domains. Let's explore some of the areas where the Fibonacci
sequence is utilized and appreciated.

Mathematics: In mathematics, the Fibonacci sequence serves as an example of a recursive
sequence. It has been extensively studied for its unique properties and connections to other
mathematical concepts. The sequence is often used to introduce recursion, mathematical
induction, and number patterns in educational settings.

Nature and Biology: The Fibonacci sequence can be observed in numerous natural phenomena,
showcasing its presence in the living world. It appears in the branching patterns of trees, the
arrangement of leaves on stems, and the spirals of flowers and pinecones. The sequence even
manifests in the growth patterns of seashells and the breeding patterns of certain animal
populations.

Art and Design. Artists, designers, and architects draw inspiration from the Fibonacci sequence
to create aesthetically pleasing compositions. The ratios derived from consecutive Fibonacci
numbers, such as the golden ratio (approximately 1.618), are considered visually harmonious and
are often utilized to create balanced and visually appealing designs in various art forms.

Technical Analysis and Finance: In the realm of finance, the Fibonacci sequence finds
application in technical analysis. Traders and analysts use Fibonacci retracement levels, derived
from ratios within the sequence, to identify potential support and resistance levels in price charts.
This technique aids in making informed decisions regarding market trends and price movements.

Computer Science: The Fibonacci sequence has relevance in computer science and algorithms. It
serves as a basis for understanding and implementing recursive algorithms, dynamic
programming, and efficient coding practices. The sequence is also encountered in various
algorithms related to searching, sorting, and optimization problems.

Music and Rhythm: Musicians and composers have found inspiration in the Fibonacci sequence
to create melodically pleasing compositions. The ratios and patterns derived from the sequence
are employed to establish rhythmic structures and harmonies that are pleasing to the human ear.

These are just a few examples of the wide-ranging applications and influence of the Fibonacci
sequence. Its intrinsic allure continues to captivate researchers, artists, and enthusiasts,
reinforcing its status as a fascinating mathematical concept with numerous real-world
implications.

The definition of Fibonacci’s Sequence

The Fibonacci sequence is defined by the sum of the two previous sequence numbers with the
initial condition that the First two numbers are 0 and 1.

21 September 2023. Page 6

Fast Computation of the Fibonacci sequence in Arbitrary Precision

The Fibonacci sequence starts with 0 and 1, and each subsequent number is obtained by adding
the two numbers before it. Therefore, the Fibonacci sequence begins as follows: 0, 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, and so on.

Mathematically, the Fibonacci sequence can be defined using the recurrence relation:
Fn)=Fm-1) + F(n-2) (1)

where F(n) represents the n term in the sequence, F(n-1) represents the (n-1) term, and F(n-2)
represents the (n-2)™ term. By convention, F(0) is usually taken as 0, and F(1) is 1, which serves
as the starting point for the sequence. In a 32-bit environment you hid the limit after the 47
Fibonacci number while in a 64-bit environment, the limit without overflowing is the 93™
Fibonacci number.

The Fibonacci Sequence and the Golden Ratio

The connection between the Fibonacci sequence and the golden ratio is a significant and
fascinating aspect of mathematics. The golden ratio, often denoted by the Greek letter phi (o), is
approximately equal to 1.6180339887.

The relationship between the Fibonacci sequence and the golden ratio arises from the ratios of
consecutive Fibonacci numbers. As the Fibonacci sequence progresses, if we take the ratio of
each term to its predecessor, the values approach the golden ratio. More precisely, the ratio of
consecutive Fibonacci numbers tends to converge to the golden ratio as the sequence grows
larger.

For example, if we divide a Fibonacci number by its preceding number, such as 5 divided by 3 or
89 divided by 55, the ratios approximate the golden ratio. As we take larger Fibonacci numbers,
the ratios become increasingly closer to the value of o.

This connection between the Fibonacci sequence and the golden ratio is mathematically
expressed as follows:

., F(n+1) _
rlll—m; F(n) o

(2)

where lima_... denotes the limit as n approaches infinity, F(n) represents the n™ Fibonacci
number, and ¢ represents the golden ratio.

The golden ratio has significant geometric and aesthetic properties. It is often associated with
harmonious proportions and is found in numerous art forms, architecture, and nature. The
proportions of the golden ratio are visually pleasing and can be seen in famous works of art, such
as the Parthenon in Athens and Leonardo da Vinci's paintings.

The connection between the Fibonacci sequence and the golden ratio adds an intriguing layer of
mathematical beauty and symmetry to both concepts. It highlights the inherent elegance and

21 September 2023. Page 7

Fast Computation of the Fibonacci sequence in Arbitrary Precision

interplay between numbers, patterns, and aesthetics, captivating mathematicians, artists, and
thinkers throughout history.

The simple computational approach of the Fibonacci sequence

The definition of the Fibonacci sequence in (1) lent itself to an implementation using recursive
function calls as outlined below.

// Recursive Fibonacci sequence

// F(n) = F(n-1) + F(n-2)

static uintmax_t fibonacci(const uintmax_t n)

{
if (n <=1) return n;// Base case for Fibonacci sequence
return fibonacci(n - 1) + fibonacci(n - 2);

}

Very simple and self-explanatory recursive implementation of the Fibonacci sequence. While it
correctly calculates the Fibonacci numbers, it has certain pros and cons to consider:

Pros:

e Simplicity: The recursive implementation follows the mathematical definition of the
Fibonacci sequence closely, making it easy to understand and implement.

e Readability: The code reflects the recurrence relation of the Fibonacci sequence (F(n) =
F(n-1) + F(n-2)), which can aid in understanding the logic behind the sequence.

e Accuracy: The implementation accurately computes the Fibonacci numbers for a given
input.

Cons:

e FExponential Time Complexity: The recursive approach has exponential time complexity.
Each call to the fibonacci function results in two additional recursive calls, leading to a
significant number of redundant computations. As a result, the time taken to compute
larger Fibonacci numbers grows rapidly, making it inefficient for large inputs. This
inefficiency is due to the repeated calculations of the same Fibonacci numbers multiple
times.

e Redundant Calculations: As mentioned above, the recursive implementation recalculates
Fibonacci numbers multiple times. For example, when calculating fibonacci (n), it may
recursively calculate fibonacci (n-1) and fibonacci(n-2), and each of these recursive calls
will further calculate their respective subproblems, resulting in redundant calculations.

e Stack Overflow: The recursive implementation is prone to stack overflow errors for larger
values of n. With each recursive call, additional function calls are added to the call stack,
and if the stack limit is reached, it can cause a stack overflow error.

To address these cons, one can consider using alternative approaches, such as iterative methods
or memoization. Iterative methods avoid redundant calculations and have linear time complexity,
while memoization stores previously computed Fibonacci numbers to avoid duplicate
calculations, significantly improving efficiency.

21 September 2023. Page 8

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Our first improvement is to memorize the previously calculated value of Fibonacci which leads
us to this source. We used the unordered map library to store the previously calculated value of
Fibonacci.

#include <unordered_map>
static std::unordered_map<uintmax_t, uintmax_t> memo;

static uintmax_t fibonacciRecursiveOptimized(const uintmax_t n)
{

if (n <= 1) return n; // Base case for Fibonacci sequence

if (memo.count(n) == 0)
memo[n] = fibonacciRecursiveOptimized(n - 1) +
fibonacciRecursiveOptimized(n - 2);

return memo[n];

}

This approach can address some of the limitations of the previous recursive implementation.
Let's discuss the pros and cons of this optimized implementation:

Pros:

o [mproved Time Complexity: By memorizing previously computed Fibonacci numbers,
redundant calculations are eliminated. This leads to a significant improvement in the time
complexity compared to the previous recursive implementation. The time complexity
becomes linear (O(n)), as each Fibonacci number is computed only once.

o Increased Efficiency: The use of memoization reduces the number of recursive function
calls, resulting in improved efficiency for larger values of n. This is because the function
retrieves the precomputed Fibonacci numbers from the memoization table, rather than
recalculating them.

e Scalability: The optimized implementation allows for the computation of larger
Fibonacci numbers within a reasonable time frame, thanks to the elimination of
redundant calculations and the linear time complexity.

Cons:

e Space Complexity: The optimized implementation utilizes additional memory to store the
memoization table, which can consume memory proportional to the input value n. For
very large values of n, this can result in a significant memory footprint. However, the
space complexity remains reasonable compared to the exponential space complexity of
the previous recursive implementation.

e Potential Hash Collisions: If the input value n becomes extremely large, there is a slight
possibility of hash collisions in the unordered map used for memoization. However, this
is unlikely to occur in practice and can typically be addressed by using a larger hash table
or alternative data structures.

Below is a table that lists the number of recursive calls made in these two implementations

21 September 2023. Page 9

Fast Computation of the Fibonacci sequence in Arbitrary Precision

The first x number of Recursive call without Recursive call with
Fibonacci value memoization memoization

10 177 19

20 21,891 39

30 2,692,537 59

40 331,160,281 79

50 40,730,022,147 99

As can be seen from the table in the first implementation the number of recursive calls goes out
of hand and becomes the limitation for making any practical computation of the Fibonacci
sequence.

The optimized implementation with memoization significantly improves the efficiency and time
complexity of computing Fibonacci numbers. It provides a scalable solution for larger inputs
while utilizing additional memory resources for storing the memoization table.

However, we do have a faster alternative in our first simple approaches to a computationally
efficient method and that is to use looping instead of recursion. With looping we eliminate the
issues with excessive recursion but also the need to memorize all previous numbers. The loop-
based source I listed below.

// Fibonacci loop based
static uintmax_t fibonacci_loop(const uintmax_t n)

{
if (n <= 1) return n;
uintmax_t previous = 0, current = 1, i;
for (i = 2; i <= n; ++1i)
{
uintmax_t tmp = current + previous;
previous = current;
current = tmp;
}
return current;
}

In this approach, we only need to keep the last two numbers to compute the next sequence.

The loop-based implementation of the Fibonacci sequence offers a different approach to
calculating the Fibonacci numbers. Let's again explore the pros and cons of this implementation:

Pros:

o Improved Time Complexity: The loop-based implementation has a linear time complexity
of O(n), making it more efficient than the previous recursive implementations. It
computes each Fibonacci number iteratively without redundant calculations, resulting in
faster execution for larger values of n.

e Reduced Space Complexity: The loop-based implementation does not require additional
data structures or memorization tables. It only utilizes a few variables to store the current
and previous Fibonacci numbers, leading to lower space complexity compared to the
memorization-based approach.

21 September 2023. Page 10

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Cons:

e Lack of Readability: The loop-based implementation may be slightly more challenging to
understand for individuals unfamiliar with iterative programming constructs. The
calculation of the Fibonacci numbers is done within the loop using temporary variables,
which can make the code less intuitive compared to the recursive or memorized versions.

e Limited Precision: Depending on the data type used (uintmax_t in this case, typically 64-
bit), the loop-based implementation may encounter limitations in representing extremely
large Fibonacci numbers accurately. If the Fibonacci numbers exceed the maximum value
that can be stored in the chosen data type, the results may be incorrect or wrap around,
leading to inaccuracies.

These cons are a little bit far fetching for such a small function. Readability is not an issue and
with limited precision, you do have an issue since a 64-bit data type can only hold the compute
the first 93 Fibonacci numbers without overflowing, emphasizing the need to have an
implementation that utilizes arbitrary precision arithmetic.

The loop-based implementation offers a computationally efficient and straightforward approach
to calculating Fibonacci numbers. It avoids the recursive overhead and redundant calculations
present in the previous recursive implementations.

The more advanced computation of the Fibonacci sequence.

All of the previous methods required that we start from scratch and then continue finding the
next term until we have reached the Fibonacci number we are looking for. For small numbers
this approach is OK and the fastest one. However, if we want to find the Fibonacci number for
large values of n then this approach does not work any longer. Instead, we can use a technique
called matrix exponentiation or the fast-doubling method to find the number.

Matrix Exponentiation

The method consists of raising a particular matrix to a power of n. If we take the base matrix M
= 1 é] and raise it to the power of n (in other words calculate M", then we get the (n+1)™
Fibonacci number as the element at row and column [0, 0] in the resultant matrix. You can
generalize the elements as follows.

1 1]”_ Fo 1 Fn]

1 0ol "l E F.,4 (3)

Now this can easily be implemented efficiently using recursion. As outlined in the below
algorithm.

Function F(n)
11
M_[1 0

Ifn is even

21 September 2023. Page 11

Fast Computation of the Fibonacci sequence in Arbitrary Precision

k=n/2:
HalfPower=M*
F(n)= HalfPower*HalfPower

Ifn is odd

k=(n-1)/2:
HalfPower=M*
F(n)= M*HalfPower*HalfPower

Algorithm 1 Matrix exponentiation algorithm for Fibonacci number

The matrix exponentiation method for calculating Fibonacci numbers offers several advantages
and some potential drawbacks. Let's explore the pros and cons of this approach:

Pros:

e [mproved Efficiency: The matrix doubling method provides a significantly faster
computation of Fibonacci numbers compared to the recursive or iterative approaches. It
achieves a time complexity of O(log n), where n is the desired Fibonacci number. This
makes it highly efficient for large values of n, as it avoids redundant calculations and
reduces the number of multiplications.

e Elimination of Redundant Calculations: The matrix doubling method utilizes matrix
exponentiation to raise the base matrix to the power of n-1. By utilizing exponentiation
by squaring, it eliminates the need for repetitive calculations of intermediate Fibonacci
numbers. This results in a substantial reduction in computational steps.

o Scalability: The matrix doubling method is well-suited for computing Fibonacci numbers
with very large values of n. It can handle extremely large Fibonacci numbers efficiently
due to its logarithmic time complexity, enabling calculations that are infeasible with other
methods.

Cons:

e [ncreased Complexity: The matrix exponentiation method introduces additional
complexity compared to simple recursive or iterative approaches. It requires the
implementation of matrix multiplication and matrix exponentiation algorithms, which can
be more challenging to understand and implement correctly.

e Memory Usage: The matrix doubling method requires storing and manipulating matrices
during the computation. This can consume more memory compared to other methods that
only require storing a few variables. However, memory usage is still reasonable and
typically not a significant concern unless huge Fibonacci numbers are involved.

e Precision Limitations: Depending on the chosen data type and the size of Fibonacci
numbers being computed, the matrix doubling method may encounter limitations in
accurately representing extremely large Fibonacci numbers. If the chosen data type lacks
sufficient precision or the numbers exceed their representable range, the results may
become inaccurate or overflow.

21 September 2023. Page 12

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Although the matrix exponentiation method offers substantial advantages in terms of efficiency
and scalability for calculating Fibonacci numbers it does first show its real advantage for a much
higher number of the Fibonacci sequence that can only be computed using higher data types than
the 64-bit limit in most system. This means we have to turn to arbitrary precision before this
method will have any advantages over the others.

// Fibonacci exponentiation formula to calculate the nth Fibonacci number
static uintmax_t fibonacci_exponentiation(const uintmax_t n)

{
if (n <= 1)
return n; // Base case for Fibonacci sequence
// Lambda for matrix multiplication of two 2x2 matrix
auto matrixMultiply = [J(Cconst std::vector<std::vector<uintmax_t>>& A,
const std::vector<std::vector<uintmax_t>>& B)
{
std: :vector<std: :vector<uintmax_t>> result(2, std::vector<uintmax_t>(2,
0));
// Unroll the loop for a fixed-size 2x2 matrix
result[e][e] = A[e][e] = B[e][e] + A[e][1] * B[1][e];
result[0][1] = A[e][e] » B[e][1] + A[e][1] = B[1][1];
result[1][e] = A[1]1[e] = B[e][6e] + A[1][1] = B[1][el];
result[1][1] = A[11[e] = B[el[1] + A[11[1] = B[11[1];
return result;
5

// Exponentiate matrix M to the power of n

// We need to use the std::function to be able to call the lambda

// function recursively.

std: :function<std::vector<std::vector<uintmax_t>>(const
std: :vector<std::vector<uintmax_t>>&,const uintmax_t)> matrixPower = [&](const
std: :vector<std: :vector<uintmax_t>>& M, const uintmax_t n)

{
if (n == 0)
// Identity matrix
return std::vector<std::vector<uintmax_t>> { {1, 0}, {0, 1} };
if (n == 1)
return M;
std: :vector<std::vector<uintmax_t>> halfPower;
if (n % 2 == 0)
{
halfPower = matrixPower(M, n / 2);
return matrixMultiply(halfPower, halfPower);
}
else
{
halfPower = matrixPower(M, (n - 1) / 2);
return matrixMultiply(matrixMultiply(ChalfPower, halfPower), M);
}
5

const std::vector<std::vector<uintmax_t>> baseMatrix = { {1, 1}, {1, o} };
std::vector<std::vector<uintmax_t>> resultMatrix = matrixPower(baseMatrix, n -
1);

21 September 2023. Page 13

Fast Computation of the Fibonacci sequence in Arbitrary Precision

return resultMatrix[0][0]; // Return the Fibonacci number from [0][0]

We can improve the method further by exploiting some symmetry and relationship between the
matrix elements.

1 1]n: Fn+1 Fn]: Fn+1 Fn (4)
1 0 f% Fﬁ—l Fh Fﬁ+1 _'Ph

We notice that with the information in the first row, we can create the second row if needed. This
means that we don’t need to carry around a 2x2 matrix but can settle for a vector with the two
elements.

[Fh+LPh]

And then carry out the matrix multiplication to achieve the same result as for a real 2x2 matrix
multiplication. Normally when carrying out a 2x2 matrix multiplication it involves 8
multiplication and 4 additions. With this new approach, we get 4 multiplication, 2 addition, and
one subtraction. Nearly a ~42% reduction in operations plus we only need to handle a vector of 2
elements instead of a matrix with 4 elements.

The revised source is.

static uintmax_t fibonacci_exponentiationOptimized(const uintmax_t n)
{
if (n <= 1)
return n; // Base case for Fibonacci sequence

// Lambda for matrix multiplication of two 2x2 matrix

// However, this is not a general matrix multiplication but is optimized ¢

// with the knowledge that it arises as a power of the base matrix {{1,1},{1,03}}.
// Therefore, we can exploit some symmetry eliminating 4 multiplications out

// of 8 multiplication and one addition out of four

// Instead of a 2x2 matrix we only need the first row as a vector

auto Multiply = [l(Cconst std::vector<uintmax_t>& A, const std::vector<uintmax_t>&

B)
{
std: :vector<uintmax_t> result(2);
//Multiply a fixed-size 2x2 matrix disguised as two vectors of the first
rows
result[@] = A[0] * B[O] + A[1] * B[1],;
result[1] = A[0] = B[1] + A[1] > (B[0] - B[11);
return result;
5

// Exponentiate matrix M to the power of n
// We need to use the std::function to be able to call the lambda
// function recursively.
std: : function<std::vector<uintmax_t>(const std::vector<uintmax_t>&, const
uintmax_t)> matrixPower = [&](const std::vector<uintmax_t>& M, const uintmax_t n)
{
if (n == 0)

21 September 2023. Page 14

Fast Computation of the Fibonacci sequence in Arbitrary Precision

// Identity matrix
return std::vector<uintmax_t> {1, 0};

if (n == 1)
return M;

std: :vector<uintmax_t> halfPower;
if (n %2 == 0)

{
halfPower = matrixPower(M, n / 2);
return Multiply(halfPower, halfPower);
}
else
{
halfPower = matrixPower(M, (n - 1) / 2);
return Multiply(Multiply(ChalfPower, halfPower), M);
}

5

const std::vector<uintmax_t> baseMatrix = {1, 1};
std: :vector<uintmax_t> resultMatrix = matrixPower(baseMatrix, n - 1);

return resultMatrix[0]; // Return the Fibonacci number from resultMatrix[0][1]

Fast doubling method
Another fast method is derived from the matrix exponentiation method and is called the fast-
doubling method using the recursion below.

Function F(n)
If n is even

k=n/2:
F(n) = [2*F(k-1) + F(k)]*F(k)

Ifn is odd

k= (n+ 1)/2:
F(n) = F(k)*F(k) + F(k-1)*F(k-1)

Algorithm 2. Fast doubling algorithm

This optimized recursive method for calculating Fibonacci numbers, also known as the "Fast-
Doubling" method, has its own set of advantages and disadvantages compared to other
approaches like naive recursion, iterative methods, and matrix exponentiation.

Pros:

o Efficient Time Complexity: The "Fast Doubling" method has a time complexity of O(log
n), which is significantly faster than the naive recursive approach with a time complexity
of O(2") and even faster than the iterative methods with a time complexity of O(n).

21 September 2023. Page 15

Fast Computation of the Fibonacci sequence in Arbitrary Precision

e Avoids Redundant computation: If the method uses memoization, caching previously
computed Fibonacci numbers, to avoid redundant computations. This reduces the number
of recursive calls and improves the performance, especially for larger values of n.

o Simple Implementation: The recursive nature of the algorithm makes it easy to implement
and understand, making the code concise and readable.

e No Precision Issues: Unlike some other methods that rely on floating-point arithmetic,
the "Fast Doubling" method works with integers, eliminating potential precision issues,
but still subject to the limitation of the integer data type.

e No Memory Overhead: The memory overhead is relatively low compared to matrix
exponentiation-based methods, as it does not require storing large matrices.

Cons:

e Recursive Stack Limit: For very large values of n, the recursive nature of the method
might cause a stack overflow due to the limitation of the call stack size. Although
memoization helps avoid redundant calls, extremely large Fibonacci numbers can still
lead to stack overflow issues.

e Space Complexity: The method uses memoization to store previously computed
Fibonacci numbers, which increases the space complexity to O(n). This can be a concern
for calculating Fibonacci numbers for very large values of n, consuming a significant
amount of memory.

e Precision Issues with Large Integers: For Fibonacci numbers with extremely large values
(larger than the maximum representable integer), the method may face precision issues,
especially on 64-bit systems.

o Integer Overflow: Despite using integers, if the calculated Fibonacci number exceeds the
maximum representable value for the integer type used, it may cause an integer overflow
and lead to incorrect results.

o Complexity in Multi-Threaded Environments: The recursive nature of the method may
introduce complexities when parallelizing computations in multi-threaded environments.

The optimized recursive "Fast Doubling" method is an efficient way to calculate Fibonacci
numbers with a time complexity of O(log n). However, it may suffer from recursion depth and
memory overhead issues for extremely large values of n. Depending on the specific use case and
constraints, this method can be a good choice for most practical scenarios, especially when the
Fibonacci numbers to be calculated are within the representable range of the integer data type
being used. For even more efficient computations, matrix-based methods like matrix
exponentiation can be considered, which have a lower space complexity but require more
sophisticated implementation.

Fast doubling without using memoization.

//F(n) = [2 * F(k = 1) + F(k)] * F(K)

//F(n) = FCK) * F(K) + F(k - 1) * F(k - 1)

// Without Memorization

static uintmax_t fibonacciRecursiveOptimized2A(uintmax_t n)

{

21 September 2023. Page 16

Fast Computation of the Fibonacci sequence in Arbitrary Precision

if (n <= 1)
return n;

uintmax_t k = (n %2 ==0) ?2n /2 : (n+1) / 2;
uintmax_t fk = fibonacciRecursiveOptimized2A(k);
uintmax_t fkMinusl = fibonacciRecursiveOptimized2A(Ck - 1);

uintmax_t result;
if (n %2 == 0)
result = (2 * fkMinusl + fk) * fk;

else

result = fk * fk + fkMinusl * fkMinusl;

return result;

}

Now since we are repeatedly recursive using both f(k) and f(k-1) we could see if we can gain any
advantage using memorization as in the source below.

//F(n) = [2 » F(k - 1) + F(K)] * F(Kk)

//F(n) = F(K) * F(k) + F(k —= 1) = F(k - 1)

// with memorization

#include <unordered_map>

static std::unordered_map<uintmax_t, uintmax_t> memo;

static uintmax_t fibonacciRecursiveOptimized2B(uintmax_t n)

{
if (n <= 1)
return n;

if (memo.count(n) > 0)
return memo[n];

uintmax_t k= %$2=0)2?n/2: (+1)/ 2;
uintmax_t fk = fibonacciRecursiveOptimized2B(k);
uintmax_t fkMinusl = fibonacciRecursiveOptimized2B(k - 1);

uintmax_t result;
if (n % 2 == 0)
result = (2 * fkMinusl + fk) * fk;

else

result = fk * fk + fkMinusl * fkMinusl;
memo[n] = result;
return result;

}

Memorization does reduce the number of recursive calls significantly.

The first x number of Recursive call without Recursive call with
Fibonacci value memeoization memeoization

10 19 11

20 39 15

30 45 19

40 63 19

50 81 25

21 September 2023. Page 17

Fast Computation of the Fibonacci sequence in Arbitrary Precision

60 91 23
70 107 27
80 127 23
920 147 29

Whether we can gain any advantage from using memoization is discussed in the performance of
the Fibonacci methods below.

Performance of the methods in a 64-bit environment

Fibonacci Performance

1,000.00000000
100.00000000
10.00000000
1.00000000

10 20 30 40 50 60 70 80 90

0.10000000

0.01000000

msec

0.00100000

0.00010000

0.00001000

0.00000100

0.00000010
Finonacci(n)

e Recursive == Recursive optimized Fast doubling 2A
Fast doubling 2B e | OO e Exponentiation

e Fxponentiation Optimized

The use of 64-bit arithmetic sets limits on how high the sequence of the Fibonacci number we
can generate within the 64-bit space. As indicated in the above figure we time the performance
of generated the first 10, 20, ..., up to 90 (Maximum is 93 in a 64-bit environment).

As can be seen, the use of a pure recursion has an exponential slow behavior as we increase the
Fibonacci number, and above 40-50 it becomes useless for any practical purpose.

Recursion optimized is the standard recursion using memoization and it scales a lot better than
the original version but is the slowest among the other methods. In general, we can’t recommend

21 September 2023. Page 18

Fast Computation of the Fibonacci sequence in Arbitrary Precision

the use of these two recursive methods.

The matrix exponentiation is faster but due to the complexity of using matrix operations, it is not
the fastest method for Fibonacci numbers below 90. The fast-doubling method is the most
efficient but not the fastest either. Interestingly enough, the use of memoization is not faster than
not using memoization. This is properly because we are still dealing with small numbers of the
Fibonacci sequence and the memoization does not kick into gears at these low Fibonacci
numbers.

Interestingly enough the brute force method is the fastest of them all in a 64-bit environment.

Approximation of the Fibonacci sequence using Binet’s formula
Binet’s formula for the Fibonacci sequence is.

B P =™ B P =™

Were

_ 1+V5
T2

@ ~ 1.61803 ... (6)

¢ is the golden ratio. And

&

1_

Y =—" (7

Usually, you don’t implement the algorithm using this formula, but instead observe that

n
NG < % for all n greater or equal to zero and then you can simplify the formula to the nearest
n

: @
integer to NG

Fo=% (8)
However, the accuracy of the computation depends on the accuracy of the underlying
IEEE754 arithmetic implemented in most systems. For 64-bit IEEE754 floating-point you
get an accurate result up to Fr7o whereafter rounding errors make the result inaccurate.

// Binet's Fibonacci approximation formula
static uintmax_t fibonacci_binet(const intmax_t n)

{
if (n <= 1) return n; // Fibonacci base cases
double phi = (1.0 + sqrt(5.0)) / 2;
return uintmax_t(round(pow(phi, n) / sqrt(5)));
}

Recommendation for Fibonacci methods in a 64-bit environment.
Since the simple loop is faster compared to the other methods and the simplest to implement, I
recommend using that method for the valid range of the Fibonacci sequence between 0 and 93.

21 September 2023. Page 19

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Fibonacci number in arbitrary precision

As the max limit is the 93™ Fibonacci number in a 64-bit environment you quickly need to go to
arbitrary precision to compute a higher number of the Fibonacci sequence. Now based on the
previous performance figure we can discard the least efficient method and look at these three
methods and how they scaled with higher Fibonacci numbers. The four interesting methods are

The brute force loop-based, method

The Matrix exponentiation method

The fast-doubling method

The Binet’s direct formula if we can get it to scale well and maintain the accuracy of the
result

e

It is relatively easy to convert the first 3 methods to arbitrary precision where you replace the
uintmax_t (64-bit unsigned integer) to int_precision which is the data type for the arbitrary
precision integers in [1].

Source Fibonacci loop-based method.

// Fibonacci loop based in arbitrary precision
static int_precision fibonacci_loop(const int_precision& n)
{

const int_precision c1(1);

if (n <= cl) return n; // Fibonacci Base cases

int_precision previous(0), current(l), i(2);
for (; i <= n; ++i)
{
int_precision tmp = current + previous;
previous = current;
current = tmp;
}

return current;

Source Fibonacci Optimized Matrix exponentiation method.

// Fibonacci doubling formula optimized to calculate the nth Fibonacci number
// Instead of a 2x2 matrix we only need the info from the first row and therefore it is
implemented as a vector with two elements
// This speeds up the calculation with a factor of 2 to 3 times.
static int_precision fibonacci_exponentiationOptimized(const int_precision& n)
{

const int_precision c1(1);

if (n <= cl)

return n; // Base case for Fibonacci sequence

// Lambda for matrix multiplication of two 2x2 matrix

// However, this is not a general matrix multiplication but is optimized with
// the knowledge that it arises as a power of the base matrix {{1,1},6{1,03}}.
// Therefore, we can exploit some symmetry

// result[1]1[0]=result[0][1] and result[1][1]=result[0][0]-result[0][1]

// eliminating 4 multiplications out of 8 multiplication and one addition

// out of four

// Instead of a 2x2 matrix we only need the first row as a vector

21 September 2023. Page 20

Fast Computation of the Fibonacci sequence in Arbitrary Precision

auto Multiply = []Cconst std::vector<int_precision>& A, const

std: :vector<int_precision>& B)

rows

{
std: :vector<int_precision> result(2);
//Multiply a fixed-size 2x2 matrix disguised as two vectors of the first
result[0] = A[0] * B[0] + A[1] * B[1];
result[1] = A[e] = B[1] + A[1] = (B[e]l - B[1D);
return result;
ki

// Exponentiate matrix M to the power of n

// We need to use the std::function to be able to call the lambda function

// recursively.

std: :function<std::vector<int_precision>(const std::vector<int_precision>&, const

int_precision&)> matrixPower = [&](const std::vector<int_precision>& M, const
int_precision& n)

}
Source

static

//F(n)
//F(n)
static

{

{ const int_precision c1(1), c2(2);
if (n.iszero(Q))
// Identity matrix
return std::vector<int_precision> {1, 0};

if (n == cl)
return M;

std: :vector<int_precision> halfPower;
if ((n % c2).iszero())

halfPower = matrixPower(M, n / c2);
return Multiply(halfPower, halfPower);

}
else
{
halfPower = matrixPower(M, (n - cl) / c2);
return Multiply(MultiplyChalfPower, halfPower), M);
}

H

const std::vector<int_precision> baseMatrix = { 1, 1 };
std: :vector<int_precision> resultMatrix = matrixPower(baseMatrix, n - cl);

return resultMatrix[0@]; // Return the Fibonacci number from resultMatrix[0][1]

Fibonacci Optimized fast doubling method with memoization.

std: :unordered_map<uintmax_t, int_precision> ipmemo;

=[2 * F(k - 1) + F(K)] * F(K)

= F(k) * F(K) + F(k - 1) * F(k - 1)

int_precision fibonacciRecursiveOptimized3B(int_precision& n)
const int_precision c1(1), c2(2);

if (n <= cl)

return n;

if (ipmemo.count(n) > 0)
return ipmemo[n];

int_precision k = ((n % 2).iszero()) ? n / c2 : (n + cl) / c2;

21 September 2023. Page 21

Fast Computation of the Fibonacci sequence in Arbitrary Precision

int_precision fk = fibonacciRecursiveOptimized3B(K);
int_precision fkMinusl = fibonacciRecursiveOptimized3B(k - cl);

int_precision result;
if ((n % c2).iszero())

result = (c2 * fkMinusl + fk) * fk;
else

result = fk * fk + fkMinusl * fkMinusl;

ipmemo[uintmax_t(n)] = result;
return result;

Binet’s formula in arbitrary precision

The drawback of Binet’s formula is the lack of accuracy with higher Fibonacci numbers due to
IEEE754 64-bit fixed accuracy. Luckily, we can circumvent that issue using arbitrary precision
floating point since we can dynamically increase the accuracy as needed for higher Fibonacci
numbers. In [2] they give an approximation of the needed decimal accuracy as:

nlog,,(¢) = 0.209n (9)

E.g. for Fi00 you need 0.209n=20.9decimal accuracy in your computation of the 100" Fibonacci
number. We can therefore lay out the source code for the arbitrary precision version of Binet’s
approximation formula.

// Binet's formula using arbitrary precision
static int_precision fibonacci_binetfp(const intmax_t n)
{
if (n <= 1) // Fibonacci Base cases
return n;

float_precision phi, sq5(5);

//Compute precision and add a few extra digits to be sure

intmax_t prec = intmax_t(n * 0.209 + U);

if (prec < 20) prec = 20; // use a minimum of 20 decimal digits
phi.precision(prec); sq5.precision(prec); // Change the precision
sq5 = sqrt(sq5);

phi = (float_precision(1l) + sqg5) / float_precision(2);

phi = pow(phi, float_precision(n)) / sq5;

return int_precision(round(phi));

21 September 2023. Page 22

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Performance using arbitrary precision

Fibonacci in Arbitrary precision

100

10
(%2}
©
C
o

@ 1
]
IS

0.1

0.01

| 00p === Doubling wo. Memory
Doubling w. memory Matrix exponentiation

e [\atrix optimized exponentiation s Binet

Interestingly enough the picture changes quite a bit while using arbitrary precision. The basic
loop algorithm which was faster within a 64-bit environment fell short in arbitrary precision. The
doubling algorithm with or without memoization performs the same in 64-bit it is dramatically
different in arbitrary precision. The reason is of course that memoization helps reduce the
number of recursive calls and also reduce the number of arbitrary precision operations. As we
saw in the 64-bit environment matrix exponentiation the unoptimized performs poorly compared
to the optimized version and the optimized version is the faster method up to around the first
5,500 Fibonacci numbers whereafter the doubling method with memoization takes over. Binets
Fibonacci formula is an exciting method but the need for increased accuracy for higher Fibonacci
numbers makes the method less efficient compared to the other methods.

Recommendation for Fibonacci in arbitrary precision

The two preferred methods are the doubling method with memoization and the Matrix
exponentiation method. For the Fibonacci number between 100 and 5,500, the matrix method is
faster but then the Fibonacci doubling method takes over. To balance the two methods, I
recommend a hybrid approach that automatically switches between the most efficient method
including the loop-based method that can be handled by 64-bit integers.

Our Final Hybrid version
Below is the final performance of our hybrid version that takes advantage of the 64-bit arithmetic
as possible, with memoization and the fast-doubling algorithm.

21 September 2023. Page 23

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Fibonacci in Arbitrary precision

10
1
\\}
QS
3 > e £
c
o
o 01
)
€
—
0.01 /_/
0.001
Fn
| 00p Doubling w. memory === NMatrix optimized exponentiation e Hy/brid

Notice that the Hybrid algorithm performs much better for small to large Fibonacci numbers and
then the asymptotic approach the Fast-doubling algorithm for very large Fibonacci numbers.

// Final hybrid version of the Fibonacci sequence F(n)
// If n <= 93 then use 64-bit arithmetic and the loop-based Fibonacci method
// Otherwise, we use the Fast-doubling method with memorization and call of
// 6u-bit Fibonacci loop when needed
//
static int_precision fibonacci(int_precision& n)
{
const int_precision ¢1(1),c2(2), limitéubit(93);

auto loop = [&](const int_precision& n)

{// Handle Fibonacci sequence up to 93 with is the limit in a 6u4-bit environment
if (n <= cl) return n;// Handle Fibonacci base cases
uintmax_t previous = 0, current = 1;
for (int i = int(n); i >= 2; --1i)

{
uintmax_t tmp = current + previous;
previous = current;
current = tmp;

}

return int_precision(current);

H

std: :unordered_map<uintmax_t, int_precision> ipmemo; // only used in doubling
std: :function<int_precision(const int_precision&)> doubling = [&](const
int_precision& n)

if (ipmemo.count(n) > 0)
return ipmemo[n];

int_precision result;
if (n <= limitedbit)
{

result = loop(n);

21 September 2023. Page 24

Fast Computation of the Fibonacci sequence in Arbitrary Precision

3
else
{
int_precision k = ((n % c2).iszero()) ? n / c2 : (n + cl) / c2;
int_precision fk = doubling(k);
int_precision fkMinusl = doubling(k - cl1);
if ((n % c2).iszero())
result = (c2 * fkMinusl + fk) * fk;
else
result = fk * fk + fkMinusl * fkMinusl;
}

ipmemo[uintmax_t(n)] = result;
return result;

ki

ipmemo.clear();
return doubling(n);

21 September 2023. Page 25

Fast Computation of the Fibonacci sequence in Arbitrary Precision

Reference

1) Arbitrary precision library package. Arbitrary Precision C++ Packages
2) Wikipedia. Fibonacci sequence. Fibonacci sequence - Wikipedia

21 September 2023. Page 26

Fast Computation of the Fibonacci sequence in Arbitrary Precision

21 September 2023. Page 27

